Serpentin pour le contrôle de température dans une cuve de vin

CONTRÔLE DE TEMPÉRATURE CUVE DE VIN OPTIMISATION DU CONTRÔLE DE TEMPÉRATURE DANS LES CUVES L’un des plus grands producteurs de vins mousseux a mis en place un système de contrôle de la température pour 23 cuves de culture d’une capacité totale de 142 000 litres, dans le but de garantir une fermentation optimale et de maintenir la qualité du produit final. Ce projet s’est concentré sur les processus ayant lieu dans les fermes à levures, deux salles où la fermentation dure cinq jours à une température stricte comprise entre 18 et 20 ºC. Composition et conditions processus Le fluide présent dans les cuves est composé de vin, de liqueur de tirage (un sirop riche en sucres) et de levures. Cette combinaison est essentielle à la fermentation, car les levures transforment les sucres de la liqueur en alcool et en dioxyde de carbone, produisant la mousse caractéristique du vin mousseux. Le maintien de la température du fluide dans la plage spécifiée est crucial pour garantir une fermentation contrôlée et de qualité. Système d’échange de chaleur avec serpentines internes Pour atteindre ce contrôle thermique, des serpentins d’échangeurs de chaleur ont été introduits à l’intérieur des cuves. Ces serpentins, fabriqués en acier inoxydable AISI 316 avec un électropolissage, offrent une excellente résistance à la corrosion et garantissent une hygiène maximale, deux facteurs essentiels dans la production de vins mousseux. Les serpentins sont certifiés conformes à la norme MOCA (Matériaux au Contact des Aliments), garantissant que les matériaux utilisés respectent les exigences de sécurité alimentaire. Conception personnalisée sans connexions CLAMP Tous les composants du système ont été conçus sur mesure pour s’adapter parfaitement aux caractéristiques des cuves et aux besoins du client. Un design éliminant la nécessité de connexions CLAMP a été choisi, réduisant le risque de fuites et simplifiant le nettoyage et l’entretien du système. Cette approche personnalisée a également permis de maximiser l’efficacité de l’échange de chaleur et d’optimiser le contrôle de la température pendant tout le processus de fermentation. Avantages des serpentins mises en place  La mise en place de ce système a apporté de nombreux avantages opérationnels : Stabilité Thermique : Maintenir une température constante dans la plage établie a été essentiel pour garantir une fermentation homogène et de qualité. Efficacité Énergétique : Les serpentins en acier inoxydable électropoli offrent une conductivité thermique optimale, réduisant la consommation d’énergie nécessaire pour maintenir la température appropriée. Sécurité Alimentaire : La conformité aux normes MOCA garantit la qualité et la sécurité du produit final. Réduction de l’Entretien : L’absence de connexions CLAMP simplifie l’entretien et minimise les problèmes techniques potentiels. BOIXAC, SOLUTIONS EN ÉCHANGEURS DE CHALEUR Ce projet est un excellent exemple d’innovation appliquée au secteur viticole, où le contrôle précis des conditions de fermentation fait une différence significative dans la qualité des vins mousseux produits. La mise en place de systèmes personnalisés et de matériaux de haute qualité garantit non seulement l’amélioration du processus de production, mais aussi une plus grande efficacité et durabilité dans toute la chaîne de production. Contactez-nous Solutions d’échange thermique pour l’industrie alimentaire et des boissons Batterie d’eau Batterie d’eau souvent utilisée pour climatiser l’environnement des serres et des fermes d’élevage, améliorant ainsi le bien-être animal. Économiseur Économiseur d’énergie ou récupérateur de chaleur permettant de réutiliser l’énergie excédentaire, par exemple celle des chaudières à biomasse.   Échangeur aileté Échangeur de chaleur avec tubes ailetés, un système de contrôle de la température qui optimise la durabilité, même dans des environnements avec certains facteurs d’encrassement.

Économiseur pour serres

ECONOMISEUR POUR SERRES SERRES ET FERMES Un économiseur pour serres ou fermes fait référence au récupérateur de chaleur conçu pour améliorer l’efficacité dans un domaine où, entre autres, la performance des cultures est optimisée en contrôlant la température, l’humidité ambiante et le CO₂. Parmi la grande variété d’implémentations, nous distinguons trois blocs : 1. Le premier bloc fait référence au traitement de l’eau pour la croissance hydroponique des tomates, laitues, poivrons, fraises, etc. La culture hydroponique permet une croissance plus rapide et vigoureuse des plantes grâce à un accès direct aux nutriments. Ces nutriments sont dissous dans un courant d’eau qui est distribué aux plantes à travers des canaux. Pour une absorption correcte des nutriments, il est important de maintenir l’eau dans certaines plages de température, ce qui est réalisé grâce à nos tubes ailetés. Ce système d’échange de chaleur peut utiliser des ailettes en spirale ou des ailettes continues suivant la même direction que les tubes, maintenant une température homogène et optimisant à la fois la croissance des plantes et leur qualité. 2. Le deuxième bloc concerne le traitement de l’air par des conduits supérieurs où BOIXAC fournit les échangeurs ailetés qui climatissent l’air de la serre ou de l’élevage. Ces échangeurs peuvent inclure divers accessoires tels que des ventilateurs, des contrôles d’humidité et de température. 3. Le troisième bloc fait référence à la technologie qui enrichit l’environnement et augmente ainsi l’activité photosynthétique. Cela est réalisé grâce à la récupération de l’énergie excédentaire des gaz d’échappement à l’aide des récupérateurs de chaleur ECO, AIRY ou GASY. Ces équipements d’échange thermique sont sélectionnés en fonction des fluides primaires et secondaires ; de plus, les matériaux sont également choisis selon les besoins spécifiques de chaque installation. Des solutions sur mesure pour l’optimisation énergétique des serres et des fermes. Récupérateurs de chaleur pour serres et fermes Batterie d’eau Batterie d’eau souvent utilisée pour climatiser l’environnement des serres et des fermes d’élevage, améliorant ainsi le bien-être animal. Économiseur Économiseur d’énergie ou récupérateur de chaleur permettant de réutiliser l’énergie excédentaire, par exemple celle des chaudières à biomasse. Échangeur aileté Échangeur de chaleur avec tubes ailetés, un système de contrôle de la température qui optimise la durabilité, même dans des environnements avec certains facteurs d’encrassement.

Échangeur de chaleur

ÉCHANGEUR DE CHALEUR QUESTIONS ET RÉPONSES Les réponses que nous proposons ci-après sont strictement indicatives et ne doivent pas être considérées comme des conseils techniques définitifs. Pour garantir une application correcte et sécurisée, il est impératif de contacter notre bureau technique, où des professionnels qualifiés vous conseilleront en fonction de vos besoins spécifiques. BOIXAC décline toute responsabilité en cas de mauvaise utilisation ou d’interprétation de l’information fournie ici. Privilégiez toujours la sécurité et faites appel à des spécialistes pour toute tâche liée à nos produits. Qu’est-ce que un échangeur de chaleur? Un échangeur de chaleur est un appareil dont la fonction est de transférer de l’énergie thermique d’un élément à un autre, de refroidir et de chauffer. Ces éléments peuvent être des gaz, des liquides ou des solides et, en fonction de leurs caractéristiques, dans le but d’optimiser l’efficacité du processus de transfert de chaleur, la construction des échangeurs de chaleur peut varier. A quoi sert un échangeur de chaleur? Un échangeur de chaleur facilite le transfert d’énergie thermique, refroidissant et chauffant différents éléments parmi lesquels on peut trouver des fluides, des gaz et des solides. Cette fonction est particulièrement utile dans les processus industriels tels que le séchage, la pasteurisation, l’évaporation, la réfrigération ou la distillation. De même, il sert également à récupérer l’énergie résiduelle, à contrôler la température ambiante et à refroidir les moteurs. Quelles industries utilisent des échangeurs de chaleur? Le traitement thermique des échangeurs de chaleur est essentiel pour de nombreux processus dans les secteurs de l’énergie, de l’alimentation, de la chimie, du sucre, du verre, de l’automobile, du papier, de la pharmacie, du séchage des matériaux, du textile, du pétrole, du gaz, de la métallurgie, des centres de données et de l’électronique. On retrouve également des échangeurs de chaleur dans d’autres domaines comme l’agroalimentaire et le tertiaire. Comme fonctionne un échangeur de chaleur? Un échangeur de chaleur se caractérise par le fait qu’il comporte deux sections, dans chacune desquelles circule un élément qui peut être fluide, gazeux ou solide. Ces sections sont séparées par l’épaisseur d’un tube ou d’une plaque à travers laquelle la chaleur est transférée d’un côté à l’autre sans que les flux ne se mélangent. Pour que l’énergie thermique soit transférée, il doit y avoir un certain différentiel de température entre les flux et les matériaux sélectionnés doivent être conducteurs. C’est pourquoi les échangeurs de chaleur sont souvent réalisés en cuivre, en aluminium, en acier, en acier inoxydable, en titane ou en cupro-nickel, à la fois pour maximiser le coefficient d’échange thermique et aussi pour s’adapter aux différentes particularités que peut avoir chaque élément. Le choix de la construction de l’échangeur de chaleur est directement lié aux conditions de travail. Quels types d’échangeurs de chaleur existe-t-il? Les échangeurs de chaleur peuvent être fabriqués selon des constructions très différentes, parmi lesquelles nous soulignons : 1. Échangeurs à tubes. Échangeur à tube lisse, sans ailettes. Échangeur à tube et ailettes continues. Échangeur à tube et ailettes helicoïdales. 2. Échangeurs à plaques. Échangeurs à plaques pillow. Échangeur à plaques à flux croisés. Échangeur à plaques amovibles. Échanegur à plaques soudées. 3. Échangeurs multitubulaires. Échangeurs double tube ou échangeurs tubes concentriques. Échangeur à tubes et calandres. Quelle est l’efficacité d’un échangeur de chaleur? Un échangeur de chaleur est un appareil passif, c’est-à-dire qu’il ne génère ni chaleur ni froid par lui-même. La même conception peut offrir différents niveaux d’efficacité selon les conditions dans lesquelles nous la faisons fonctionner. Parmi les conditions de travail, on retrouve des notions telles que la typologie des fluides, les débits, les températures, l’humidité absolue ou les facteurs d’encrassement. Une fois que l’utilisateur a défini l’objectif, par exemple atteindre une certaine puissance ou une certaine température en sortie de fluide, le bureau technique a pour objectif de trouver la construction qui optimise le rendement de l’échangeur thermique. Où peut-on acheter un échangeur de chaleur? Chaque installation ayant ses propres singularités, afin d’optimiser l’efficacité de chaque installation, les échangeurs de chaleur doivent être conçus et fabriqués sur mesure. C’est pourquoi nous vous recommandons de contacter un spécialiste qui saura vous guider dans la sélection et l’acquisition de ces appareils. Nous vous encourageons à visiter notre site et à nous contacter, notre bureau technique hautement spécialisé en échangeurs de chaleur saura vous guider. Comment choisir un échangeur de chaleur ? Pour choisir correctement un échangeur de chaleur, il est important de prendre en compte plusieurs points, notamment les températures d’entrée et de sortie des fluides, les débits des fluides concernés, le type de fluides et leurs caractéristiques (viscosité, corrosivité, encrassement, etc.), les contraintes d’accès, d’espace et d’installation, ainsi que les exigences en matière de maintenance et de durabilité. Sa complexité implique de contacter un spécialiste comme ceux de BOIXAC pour vous orienter et garantir que le design s’adapte correctement à vos besoins. Quel entretien nécessite un échangeur de chaleur ? Un entretien régulier est crucial pour garantir des performances optimales. Les étapes les plus courantes sont : le nettoyage périodique pour éliminer les incrustations et dépôts qui réduisent l’efficacité, l’inspection des joints et composants pour détecter une éventuelle usure ou des dommages, en particulier dans les parties critiques, le remplacement des pièces usées pour éviter les pannes opérationnelles, et les tests de pression pour s’assurer qu’il n’y a pas de fuites ou d’affaiblissement structurel. La fréquence de l’entretien dépendra des conditions du processus et de l’utilisation. Qu’est-ce que les incrustations et comment affectent-elles les performances ? Les incrustations sont des dépôts solides qui s’accumulent sur les surfaces de l’échangeur de chaleur en raison de sédiments, de minéraux ou d’autres particules présentes dans les fluides. Ce phénomène peut réduire le transfert de chaleur, augmenter la consommation énergétique et/ou provoquer une usure prématurée du système. La prévention, grâce à des filtres et à un nettoyage régulier, est essentielle pour minimiser ces effets. Comment détecter et prévenir les fuites dans un échangeur de chaleur ? Les fuites peuvent être causées par des joints usés, de la corrosion ou des dommages mécaniques. Pour les prévenir, il est recommandé de réaliser des inspections … Lire la suite

Échangeurs de chaleur dans l’industrie de l’énergie

INDUSTRIE DE L’ENERGIE ECHANGEURS DE CHALEUR POUR L’OPTIMISATION DE L’ENERGIE Les échangeurs de chaleur sont un produit très important dans l’optimisation des processus de transformation d’énergie, qu’il s’agisse de centrales thermiques, de centrales nucléaires ou de centrales hydroélectriques, entre autres. Approfondissons les singularités de chacun de ces systèmes ci-dessous : 1. Dans les centrales thermiques, les échangeurs de chaleur sont utilisés pour transférer la chaleur générée par les combustibles fossiles tels que le charbon, le pétrole ou le gaz vers un fluide tel que l’eau surchauffée ou la vapeur. Ce fluide atteint des pressions élevées et entraîne une turbine qui génère de l’électricité. Lorsque le fluide entraîne la turbine, il se refroidit et nous le condensons à l’aide d’un nouvel échangeur de chaleur que nous appelons un condenseur. Une fois condensé, nous réutilisons le fluide pour le chauffer avec une combustion fossile et générer à nouveau de l’énergie. Dans les centrales thermiques, nous pourrions trouver des centrales de cogénération qui, en plus de produire de la chaleur, génèrent de l’électricité, ainsi que des centrales de trigénération qui, en plus de produire de la chaleur et de l’électricité, génèrent de l’énergie de réfrigération, ce qui implique une plus grande efficacité énergétique et durabilité. 2. Dans les centrales nucléaires, les échangeurs de chaleur sont indispensables pour contrôler la température du réacteur à l’aide d’un fluide de refroidissement. Le fluide caloporteur absorbe la chaleur et la transmet à un générateur de vapeur qui va convertir l’énergie en électricité. Ce liquide de refroidissement, une fois refroidi, reviendra au départ pour recommencer le processus. Au-delà de cet aspect de fonctionnement, les échangeurs de chaleur sont également utilisés en préventif dans les moteurs diesel dans le but de contrôler un éventuel arrêt électrique. Il existe de nombreux autres modèles de génération d’énergie, tous avec des singularités très particulières que nous analyserons dans d’autres articles. Au-delà des coups de pinceaux explicatifs que nous avons effectués, tous les projets nécessitent une analyse approfondie et une équipe professionnelle très expérimentée. Si vous avez des besoins, contactez-nous, nous sommes à votre disposition. Récuperation de chaleur pour l’industrie de l’énergie Économiseur industriel Unité de récupération de chaleur conçue pour économiser de l’argent en réutilisant la chaleur excédentaire des gaz d’extraction des chaudières, des turbines ou des moteurs à combustion, par exemple en cogénération. Échangeur à courants croisés Echangeur à courants croisés, généralement entre un courant de fumées ou de gaz d’extraction et un autre d’air, sans les mélanger. Avec des ouvertures pour un contrôle, un nettoyage et un entretien faciles. Échangeur de chaleur à vapeur Serpentin tubulaire pour convertir la vapeur saturée ou humide en vapeur sèche et surchauffée, généralement pour les turbines à vapeur qui produisent de l’électricité. Ils peuvent atteindre des températures allant jusqu’à 950°C.

Économiseur industriel

ECONOMISEUR ÉCONOMISEUR DE CHALEUR DANS UNE CHAUDIÈRE INDUSTRIELLE Dans le cadre de la production industrielle, l’efficacité énergétique est un facteur clé pour réduire les coûts d’exploitation et minimiser l’impact environnemental. Les chaudières industrielles sont essentielles pour de nombreux processus, tels que la production de vapeur, le chauffage de l’eau ou le chauffage d’huile thermique. L’un des composants clés qui améliore l’efficacité de ces chaudières est l’économiseur de chaleur ou le récupérateur de chaleur. Cet appareil permet de récupérer l’énergie thermique des gaz d’échappement qui, sans cette technologie, seraient perdus. Dans cet article, nous explorerons comment fonctionne un économiseur dans une chaudière industrielle à deux foyers, en utilisant un échangeur de chaleur pour transférer efficacement l’énergie thermique à des fluides tels que la vapeur, l’eau surchauffée ou l’huile thermique. Qu’est-ce qu’un économiseur est? Un économiseur est un dispositif qui récupère la chaleur résiduelle des gaz d’échappement d’une chaudière pour chauffer l’eau d’alimentation avant qu’elle n’entre dans la chaudière. Ainsi, le système augmente l’efficacité thermique de la chaudière et réduit la consommation de combustible. Le principe de fonctionnement d’un économiseur repose sur l’utilisation d’un échangeur de chaleur qui transfère l’énergie thermique des gaz de combustion à un fluide entrant, généralement de l’eau ou une autre substance thermique. Ainsi, l’eau d’alimentation atteint la chaudière à une température plus élevée, ce qui permet de réduire la quantité d’énergie nécessaire pour la chauffer jusqu’à son utilisation finale. Fonctionnement des économiseurs dans une chaudière industrielle à deux foyers Les chaudières industrielles à deux foyers, également appelées chaudières à double passage ou à double circuit, ont une structure conçue pour optimiser le transfert de chaleur des gaz de combustion. Ce type de chaudière est conçu pour maximiser l’utilisation de l’énergie des gaz d’échappement en utilisant deux circuits de flux de gaz. Dans ce contexte, l’économiseur est installé dans le premier passage des gaz d’échappement avant de passer par l’échangeur de chaleur de la chaudière. Gaz d’échappement et échangeur de chaleur : Lorsque le combustible est brûlé à l’intérieur de la chaudière, les gaz générés ont une température très élevée. Les gaz s’échappent de la chaudière et circulent dans le premier circuit, passant par l’économiseur. C’est ici que le récupérateur de chaleur profite de cette chaleur résiduelle pour la transférer à l’eau d’alimentation via un échangeur de chaleur à vapeur ou à eau. Transfert de chaleur : L’échangeur de chaleur utilisé dans l’économiseur peut être un échangeur de chaleur à vapeur, un échangeur de chaleur à eau surchauffée ou même un système conçu pour chauffer de l’huile thermique. Chacun de ces systèmes utilise un principe similaire : les gaz d’échappement cèdent leur chaleur au fluide circulant dans le système, augmentant ainsi la température de l’eau d’alimentation avant qu’elle n’entre dans la chaudière. Cela permet à la chaudière d’utiliser moins de combustible pour atteindre la température nécessaire à la production de vapeur ou pour chauffer d’autres fluides thermiques. Amélioration de l’efficacité énergétique : L’eau d’alimentation, une fois chauffée grâce à l’économiseur, atteint la chaudière à une température plus élevée. Cela signifie que la chaudière aura besoin de moins d’énergie pour la chauffer à la température de fonctionnement souhaitée. Cette économie de combustible se traduit directement par une réduction des coûts d’exploitation et une plus grande durabilité environnementale pour l’usine. Conception et matériaux de l’économiseur : Pour garantir un transfert de chaleur efficace, les économiseurs de chaudières industrielles sont souvent fabriqués à partir de matériaux résistants à des températures élevées et à la corrosion, tels que l’acier inoxydable ou des matériaux spéciaux pour des conditions de fonctionnement extrêmes. Ces matériaux permettent aux dispositifs d’avoir une durée de vie plus longue et d’être efficaces dans des conditions de travail difficiles. Types d’échangeurs de chaleur utilisés La conception de l’économiseur dépend du type de fluide à chauffer et des conditions spécifiques de chaque usine industrielle. Voici les types les plus courants d’échangeurs de chaleur utilisés : Échangeur de chaleur à vapeur : Dans certains cas, la chaudière doit générer de la vapeur pour des processus industriels. Un échangeur de chaleur à vapeur permet d’utiliser l’énergie des gaz d’échappement pour augmenter la température de l’eau avant qu’elle n’atteigne la chaudière, facilitant ainsi la production de vapeur avec moins d’énergie. Échangeur de chaleur à eau surchauffée : Lorsqu’il est nécessaire de chauffer l’eau au-delà de sa température de saturation, un échangeur de chaleur à eau surchauffée est utilisé. Ce système permet de maintenir l’eau dans un état surchauffé pour des applications industrielles spécifiques, telles que la production de chaleur ou la génération d’énergie. Échangeur de chaleur à huile thermique : Pour les processus industriels nécessitant un chauffage à haute température, l’huile thermique est une option populaire. Les échangeurs de chaleur à huile thermique sont spécifiquement conçus pour transférer la chaleur des gaz d’échappement à l’huile, permettant au système de maintenir une température constante et efficace tout au long du processus. Avantages de l’utilisation d’un économiseur Parmi les nombreux avantages que présente l’utilisation d’Économiseurs et de Récupérateurs de chaleur, nous pouvons souligner: Réduction de la consommation de combustible : L’un des principaux avantages de l’installation d’un économiseur est la réduction significative de la consommation de combustible. En récupérant la chaleur résiduelle, moins d’énergie est nécessaire pour atteindre la température de fonctionnement souhaitée. Augmentation de l’efficacité globale : Grâce à la récupération de la chaleur résiduelle, l’efficacité globale du système de chauffage s’améliore considérablement, ce qui contribue à une empreinte carbone plus faible. Économies économiques : Les coûts d’exploitation diminuent car la chaudière a besoin de moins de combustible pour produire la même quantité de vapeur ou chauffer l’eau. Durabilité : Réduire la consommation de combustible n’apporte pas seulement des avantages économiques, mais contribue également à la durabilité en minimisant l’impact environnemental des opérations industrielles. Les économiseurs ou récupérateurs de chaleur dans les chaudières industrielles à deux foyers sont des composants essentiels pour améliorer l’efficacité énergétique et réduire les coûts d’exploitation dans les processus industriels. Grâce à l’utilisation d’échangeurs de chaleur à vapeur, d’eau surchauffée ou d’huile thermique, l’énergie thermique des gaz d’échappement peut être … Lire la suite