Heat exchanger

HEAT EXCHANGER QUESTIONS AND ANSWERS What is a heat exchanger? A heat exchanger is a device whose function is to transfer thermal energy from one element to another, cooling and heating. These elements can be gases, liquids or solids and, depending on their characteristics, with the aim of optimizing efficiency in the heat transfer process, the construction of the heat exchangers can vary. What is a heat exchanger for? A heat exchanger facilitates the transfer of thermal energy, cooling and heating different elements among which we can find fluids, gases and solids. This function is especially useful in industrial processes such as drying, pasteurization, evaporation, refrigeration or distillation. Likewise, it also serves to recover residual energy, control ambient temperature and cool engines. What industries use heat exchangers? The thermal treatment of heat exchangers is essential for many of the processes in the energy, food, chemical, sugar, glass, automotive, paper, pharmaceutical, materials drying, textile, oil, gas, metallurgy, data centers and electronics industries. We also find heat exchangers in other areas such as agri-food and tertiary. How does a heat exchanger work? A heat exchanger is characterized by having two sections, in each of which an element circulates that can be fluid, gas or solid. These sections are separated by the thickness of a tube or plate through which heat is transferred from one side to the other without the flows mixing. For thermal energy to be transferred there must be a certain temperature differential between the flows and the selected materials must be conductive. This is why heat exchangers are often made of copper, aluminum, steel, stainless steel, titanium or cupro-nickel, both to maximize the heat exchange coefficient and also to adapt to the different particularities that each element may have. The selection of heat exchanger construction is directly related to the working conditions. What types of heat exchangers are there? Heat exchangers can be manufactured following very different constructions, among which we highlight: 1. Tube exchangers. Heat exchanger with smooth tubes, without fins. Heat exchanger with tubes and continuous fins. Heat exchanger with tubes and helicoidal or spiral fins. 2. Plate exchangers. Pillow plate heat exchangers. Cross flow plate heat exchangers. Removable plate heat exchangers. Welded plate heat exchangers. 3. Multitubular exchangers. Double tube heat exchangers or concentric tubes heat exchangers. Tube and shell heat exchangers. What is the efficiency of a heat exchanger? A heat exchanger is a passive device, meaning that it does not generate heat or cold by itself. The same design can offer different levels of efficiency depending on the conditions with which we make it work. Among the working conditions we find concepts such as the typology of fluids, flow rates, temperatures, absolute humidity or fouling factors. Once the user has defined the objective, for example, reaching a certain power or a certain temperature at the fluid outlet, the technical office has the objective of finding the construction that optimizes the efficiency of the heat exchanger. Where can we buy a heat exchanger? Since each facility has its own singularities, in order to optimize the efficiency of each installation, heat exchangers must be custom designed and manufactured. This is why we recommend contacting a specialist who will guide you in the selection and acquisition of these devices. We encourage you to visit our website and contact us, our technical office highly specialized in heat exchangers will guide you.

Heat exchangers in the energy industry

ENERGY INDUSTRY HEAT EXCHANGERS FOR ENERGY OPTIMIZATION Heat exchangers are a very important product in the optimization of energy transformation processes, whether in thermal power plants, nuclear power plants or hydroelectric power plants, among others. Let’s dive deeper into the uniqueness of each of these systems below: 1. In thermal power plants, heat exchangers are used to transfer heat generated by fossil fuels such as coal, oil or gas to a fluid such as superheated water or steam. This fluid reaches high pressures and drives a turbine that generates electricity. As the fluid drives the turbine, it cools and we condense it using a new heat exchanger we call a condenser. Once condensed, we reuse the fluid to heat it with fossil combustion and generate energy again. In thermal power plants we could find cogeneration plants which, in addition to producing heat, generate electricity, as well as trigeneration plants, which, in addition to producing heat and electricity, generate refrigeration energy, which means greater energy efficiency and sustainability. 2. In nuclear power plants, heat exchangers are essential to control the temperature of the reactor with the help of a coolant. The heat transfer fluid absorbs the heat and transmits it to a steam generator which will convert the energy into electricity. This coolant, once cooled, will return to the start to start the process over. Beyond this aspect of operation, heat exchangers are also used as a preventive measure in diesel engines with the aim of controlling a possible electrical shutdown. There are many other models of energy generation, all with very particular singularities that we will analyze in other articles. Beyond the explanatory brushstrokes we have made, all projects require in-depth analysis and a highly experienced professional team. If you have any needs, contact us, we are at your disposal.

Industrial economizer

ECONOMIZER GREENHOUSES AND FARMS Heat recuperators are important in many fields and one of them are greenhouses and farms. In this area we work in two main blocks: 1. The first block refers to the treatment of water for the hydroponic growth of tomatoes, lettuce, peppers, strawberries, etc. One solution is to heat the water in the channel before it is distributed to the plants through finned tubes. These heat exchange systems can be supplied with spiral fins or continuous fins in the same direction as the tubes. This technology homogenizes the heat in all plants and facilitates its control. Another solution is heating the air through upper ducts where BOIXAC provides the finned exchangers that heat the air in the greenhouses and farms. These exchangers can include multiple accessories such as fans and controls. 2. The second block refers to the technology that enriches the environment and thus increase photosynthetic activity. We do this by reusing the excess heat from the exhaust gases through the ECOND, AIRY or GASY heat recuperators. These heat exchange equipment are selected based on the primary and secondary fluids, in addition, the materials are also chosen according to the specific needs of each installation. Customized solutions for greenhouses and farms optimization.